Blog

Use of VLF transmissions in the location and mapping of lightning-induced ionisation enhancements (LIEs)

first_imgLightning-induced ionisation enhancements (LIEs) are usually produced by short (~ 1 s) bursts of energetic electrons precipitated from the radiation belts in the process of amplifying whistlers. During their short life (~ 30 s) LIEs diffract or otherwise modify stable transmissions of VLF waves propagating in the two-dimensional Earth-ionosphere waveguide. This causes perturbations (‘Trimpis’) on the same time scale in the phase and amplitude of these VLF waves. Unless the LIEs are large (> 100 km) and smoothly varying (e.g., Gaussian distribution of ionisation enhancement) in the horizontal directions, the LIEs need not be on the great circle path (GCP) from VLF transmitter to receiver to produce Trimpis. Large and smooth LIEs produce ‘GCP Trimpis’, while small or structured LIEs produce ‘echo Trimpis’. The two can usually be distinguished, if Trimpi phase and amplitude are monitored and if the Trimpis are observed at several frequencies or on two or more spaced receivers simultaneously. If only GCP Trimpis are considered, the causative LIEs can be located and mapped by geometric optics using a network of receivers of sufficient density (spacing ~ 100 km) and a few transmitters. Provided all Trimpis are identified as GCP, their mere detection is sufficient for location. This is equivalent to locating the LIE ‘shadows’ cast onto arrays of spaced receivers by two or more transmitters. If this GCP identification is not made, or is just assumed, location and mapping (size estimation) errors can be quite large. At VLF (λ ~ 15 km) this geometric optics approach cannot be used to study the horizontal fine structure of LIEs since LIEs producing GCP Trimpis have no fine structure. Small or structured LIEs cast a diffraction pattern onto an array of spaced receivers. If both the phase and amplitude perturbation of echo Trimpis are measured at each receiver of the array, holographic techniques can be used to reconstruct the two-dimensional map or image of the causative LIEs. It is shown that, for a single system of one transmitter and a receiver array, this allows high resolution (~ 10 km) in the azimuthal dimension only. Equally high resolution in both horizontal dimensions can be achieved with two orthogonal systems. This technique works equally well on GCP Trimpis to map the causative LIEs (which are large and structureless) without incurring location errors thereby.last_img read more

Comparative morphology of two sympatric Pareledone species from South Georgia

first_imgMorphometric data were collected for 410 specimens of Pareledone turqueti and P. polymorpha caught around South Georgia. The two species differ in beak morphology and in the male hectocotylus. The species have similar appearances although there is a small but significant difference in the mantle length/body mass relationship for females, with P. polymorpha having a relatively longer mantle. There is no significant difference in the arm length/body mass relationship between species or sexes (p>0.05), except in the case of arm IV of females. There is an interspecific significant difference between sucker number on arms I and II of males, arms I–IV of females, and between hood length and mass of the buccal mass (p<0.05), with P. turqueti having relatively lower sucker numbers, a longer hood length and greater buccal mass mass. The beak of P. turqueti is similar to that of Eledone spp. but P. polymorpha has a small, fine beak with the rostral tip ending in an elongated, sharp point. Differences in beak and buccal mass suggest that these sympatric species occupy distinct trophic niches and that the differing morphology of the male hectocotylus is a factor in reproductive isolation.last_img read more

The influence of ice on polar nearshore benthos

first_imgPolar benthic communities are subject to a range of disturbance levels from a variety of sources, principal amongst which is ice. This occurs in four main forms: the ice-foot, ice scour, anchor ice and fast ice, each of which influences benthos in a very different temporal and spatial manner. The four described forms of ice disturbance are all seasonal, but combined, influence communities throughout the year. The magnitude of ice mediated disturbance is often catastrophic and as a result both dominates benthic community structure and makes recolonization and development rates critical. This disturbance extremity results in high temporal and spatial heterogeneity, very low intertidal zone diversity and in places low mid–sublittoral diversity. It may also, however, be important in generating and maintaining the typically high sublittoral zone diversity observed at many polar localities. Intermediate frequencies or magnitudes of disturbance have been controversially discussed as important in maintaining diversity by prevention of space monopolization by overgrowth dominants in such environments as the deep sea. The shelf areas examined to date certainly suggest intermediate disturbance is important in maintaining polar sublittoral zone diversity. The combination of slow colonization and development with high frequencies of disturbance means most polar nearshore environments that have been described are permanently in a state of change or recovery.last_img read more

Understanding the past – climate history from Antarctica

first_imgAntarctic ice cores have become a unique and powerful resource for studies of climate change. They contain information on past climate, on forcing factors such as greenhouse gas concentrations, and on numerous other environmental parameters. For recent centuries, sites with high snow accumulation are chosen. They have, for example, provided the only direct evidence that carbon dioxide concentrations have increased by over 30% over the last two centuries. They have provided key datasets for other greenhouse gases, and for other forcings such as solar and volcanic. Over longer timescales, the Vostok ice core has shown how greenhouse gas concentrations and climate have closely tracked one another over the last 400 000 years. Other cores have shown detailed spatial and temporal detail of climate transitions, including the Antarctic response during rapid climate events such as Dansgaard-Oeschger events. The new core from Dome C has extended the range of ice cores back beyond 800 000 years, and even older ice could be obtained in future projects.last_img read more

Small basins in the Scotia Sea: the Eocene Drake Passage gateway

first_imgAfter isostatic correction for their sedimentary fill, the depths of two small oceanic basins in the southern Scotia Sea suggest that both started to open in mid to late Eocene times. Models of the short magnetic anomaly profiles across the basins provide support for these determinations. The location of the basins, adjacent to the present-day Drake Passage marine gateway, and the timing of continental stretching leading up to their opening, during the Ypresian (early Eocene) onset of global cooling, mean that their importance is potentially far greater than their small size implies. Extension in the region of the two basins would have opened Drake Passage to shallow or intermediate depth oceanic circulation between the Pacific and Atlantic oceans for the first time. This coincided with a reorganisation of vertical mixing patterns in the global ocean, a shift in the site of carbon sequestration from coal swamps and peatlands to ocean sediments, and the onset of a long decline in atmospheric carbon dioxide concentrations. Cenozoic global cooling may therefore have begun as a result of the shallow opening of Drake Passage.last_img read more

Low cyanobacterial diversity in biotopes of the Transantarctic Mountains and Shackleton Range (80-82 degrees S), Antarctica

first_imgThe evolutionary history and geographical isolation of the Antarctic continent have produced a unique environment rich in endemic organisms. In many regions of Antarctica, cyanobacteria are the dominant phototrophs in both aquatic and terrestrial ecosystems. We have used microscopic and molecular approaches to examine the cyanobacterial diversity of biotopes at two inland continental Antarctic sites (80-82 degrees S). These are among the most southerly locations where freshwater-related ecosystems are present. The results showed a low cyanobacterial diversity, with only 3-7 operational taxonomic units (OTUs) per sample obtained by a combination of strain isolations, clone libraries and denaturing gradient gel electrophoresis based on 16S rRNA genes. One OTU was potentially endemic to Antarctica and is present in several regions of the continent. Four OTUs were shared by the samples from Forlidas Pond and the surrounding terrestrial mats. Only one OTU, but no internal transcribed spacer (ITS) sequences, was common to Forlidas Pond and Lundstrom Lake. The ITS sequences were shown to further discriminate different genotypes within the OTUs. ITS sequences from Antarctic locations appear to be more closely related to each other than to non-Antarctic sequences. Future research in inland continental Antarctica will shed more light on the geographical distribution and evolutionary isolation of cyanobacteria in these extreme habitats.last_img read more

Year-round records of sea salt, gaseous and particulate inorganic bromine in the atmospheric boundary layer at coastal (Dumont d’Urville) and central (Concordia) East Antarctic sites

first_imgMultiple year-round records of bulk and size-segregated compositions of aerosol were obtained at the coastal Dumont d’Urville (DDU) and inland Concordia sites located in East Antarctica. They document the sea-salt aerosol load and composition including, for the first time in Antarctica, the bromide depletion of sea-salt aerosol relative to sodium with respect to seawater. In parallel, measurements of bromide trapped in mist chambers and denuder tubes were done to investigate the concentrations of gaseous inorganic bromine species. These data are compared to simulations done with an off-line chemistry transport model, coupled with a full tropospheric bromine chemistry scheme and a process-based sea-salt production module that includes both sea-ice-sourced and open-ocean-sourced aerosol emissions. Observed and simulated sea-salt concentrations sometime differ by up to a factor of 2 to 3, particularly at DDU possibly due to local wind pattern. In spite of these discrepancies, both at coastal and inland Antarctica, the dominance of sea-ice-related processes with respect to open ocean emissions for the sea-salt aerosol load in winter is confirmed. For summer, observations and simulations point out sea salt as the main source of gaseous inorganic bromine species. Investigations of bromide in snow pit samples do not support the importance of snowpack bromine emissions over the Antarctic Plateau. To evaluate the overall importance of the bromine chemistry over East Antarctica, BrO simulations were also discussed with respect data derived from GOME-2 satellite observations over Antarctica.last_img read more

What colour is penguin guano?

first_imgThe identification and quantification of Antarctic Pygoscelis penguin colonies depends increasingly on recognition of the characteristic optical properties of guano deposits, but almost all knowledge of these properties until now has been compromised by resolution and atmospheric propagation effects. Here we present hyperspectral reflectance data in the range 350–2500 nm, collected in situ from fresh guano deposits in Pygoscelis penguin colonies on Signy Island, South Orkney Islands. The period of data collection included the transition from predominantly white guano to the pink coloration characteristic of a krill-rich diet. The main identifiable features in the spectra are a broad absorption feature centred around 550 nm, responsible for the pink coloration and identified with the pigment astaxanthin, as well as several water absorption features. Variations in these features are responsible for differentiation between spectra. From these results we propose two spectral indices suitable for use with satellite data, one of which responds to the presence of astaxanthin in the guano and the other to water. Our results do not allow us to differentiate between penguin species from their guano, but do suggest that the breeding phenology of Pygoscelis penguins could be determined from a time series of multispectral imagery.last_img read more

Blue mussel shell shape plasticity and natural environments: a quantitative approach

first_imgShape variability represents an important direct response of organisms to selective environments. Here, we use a combination of geometric morphometrics and generalised additive mixed models (GAMMs) to identify spatial patterns of natural shell shape variation in the North Atlantic and Arctic blue mussels, Mytilus edulis and M. trossulus, with environmental gradients of temperature, salinity and food availability across 3980 km of coastlines. New statistical methods and multiple study systems at various geographical scales allowed the uncoupling of the developmental and genetic contributions to shell shape and made it possible to identify general relationships between blue mussel shape variation and environment that are independent of age and species influences. We find salinity had the strongest effect on the latitudinal patterns of Mytilus shape, producing shells that were more elongated, narrower and with more parallel dorsoventral margins at lower salinities. Temperature and food supply, however, were the main drivers of mussel shape heterogeneity. Our findings revealed similar shell shape responses in Mytilus to less favourable environmental conditions across the different geographical scales analysed. Our results show how shell shape plasticity represents a powerful indicator to understand the alterations of blue mussel communities in rapidly changing environments.last_img read more

Predicting which species succeed in climate-forced polar seas

first_imgUnderstanding the mechanisms which determine the capacity of any species to adapt to changing environmental conditions is one of the foremost requirements in accurately predicting which populations, species and clades are likely to survive ongoing, rapid, climate change. The polar oceans are amongst the most rapidly changing environments on earth with reduced regional sea ice duration and extent, and their faunas expected sensitivity to warming and acidification. These changes potentially pose a significant threat to a number of polar fauna. There is, therefore, a critical need to assess the vulnerability of a wide range of species to determine the tipping points, or weak links in marine assemblages. Knowledge of the effect of multiple stressors on polar marine fauna has advanced over the last 40 years, but there are still many data gaps. This study applies ecological risk assessment techniques to the increasing knowledge of polar species’ physiological capacities to identify their exposure to climate change and their vulnerability to this exposure. This relatively rapid, semi-quantitative assessment, provides a layer of vulnerability on top of climate envelope models, until such times as more extensive physiological data sets can be produced. The risk assessment identified more species that are likely to benefit from the near future predicted change (the winners), especially predators and deposit feeders. Fewer species were scored at risk (the losers), although animals that feed on krill were consistently as under the most risk.last_img read more